Stanford researchers develop a trick that could help dye-sensitized solar cells trap more light.
Dye-sensitized thin-film solar cells are cheaper to make than conventional silicon cells, but they're still relatively inefficient. Now researchers at Stanford University have used a specially designed metal reflector to boost the efficiency of solid electrolyte dye-sensitized solar cells by as much as 20 percent. The reflector is a thin silver film with an array of nanoscale bumps. The researchers use the film to coat the cells' back surface; the film helps trap more light inside the cells. "We get about 5 to 20 percent more absorption depending on the dye," says Michael McGehee, director of the Center for Advanced Molecular Photovoltaics at Stanford. McGehee led the research, which was published online this week in the journal Advanced Energy Materials.
Source: Technology Review
Dye-sensitized thin-film solar cells are cheaper to make than conventional silicon cells, but they're still relatively inefficient. Now researchers at Stanford University have used a specially designed metal reflector to boost the efficiency of solid electrolyte dye-sensitized solar cells by as much as 20 percent. The reflector is a thin silver film with an array of nanoscale bumps. The researchers use the film to coat the cells' back surface; the film helps trap more light inside the cells. "We get about 5 to 20 percent more absorption depending on the dye," says Michael McGehee, director of the Center for Advanced Molecular Photovoltaics at Stanford. McGehee led the research, which was published online this week in the journal Advanced Energy Materials.
Source: Technology Review
No comments :
Post a Comment